Indirect effect of insulin to suppress endogenous glucose production is dominant, even with hyperglucagonemia.
نویسندگان
چکیده
Suppression of endogenous glucose production (EGP) is one of insulin's primary metabolic effects and failure of this action is a major contributor to fasting hyperglycemia of type 2 diabetes mellitus. Classically, insulin was thought to suppress the liver directly, via hyperinsulinemia in the portal vein. Recently, however, we and others have demonstrated that at least part, and possibly most of insulin's action to suppress EGP is normally mediated via an extrahepatic (i.e., indirect) mechanism. We have suggested that this mechanism involves insulin suppression of adipocyte lipolysis, leading to lowered FFA and reduced EGP ("Single Gateway Hypothesis"). Previous studies of the indirect insulin effect from this laboratory were done under conditions of lowered portal glucagon. Because of the possibility that the direct (i.e., portal) effect of insulin may have been underestimated with hypoglucagonemia, these studies examined the relative importance of portal insulin, versus peripheral insulin (administered at one-half the dose to equalize peripheral insulin levels) at four rates of portal glucagon infusion: 0, 0.65 (under-), 1.5 (basal-), and 3.0 ng/kg per min (over-replacement). Portal versus peripheral insulin suppressed steady-state EGP to the same extent (52%), confirming that the primary effect of insulin to suppress EGP is via the peripheral mechanism. This conclusion was maintained regardless of portal glucagonemia, although there was some evidence for an increase in the direct insulin effect at hyperglucagonemia. The indirect effect of insulin is the primary mechanism of steady-state EGP suppression under normal conditions. The direct effect increases with hyperglucagonemia; however, the indirect effect remains predominant even under those conditions.
منابع مشابه
Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover.
The hormone glucagon has long been dismissed as a minor contributor to metabolic disease. Here we propose that glucagon excess, rather than insulin deficiency, is the sine qua non of diabetes. We base this on the following evidence: (a) glucagon increases hepatic glucose and ketone production, catabolic features present in insulin deficiency; (b) hyperglucagonemia is present in every form of po...
متن کاملEffect of fatty acids on glucose production and utilization in man.
Since the initial proposal of the glucose fatty acid cycle, considerable controversy has arisen concerning its physiologic significance in vivo. In the present study, we examined the effect of acute, physiologic elevations of FFA concentrations on glucose production and uptake in normal subjects under three controlled experimental conditions. In group A, plasma insulin levels were raised and ma...
متن کاملGlucagon stimulates expression of the inducible cAMP early repressor and suppresses insulin gene expression in pancreatic beta-cells.
The hormone glucagon is secreted by the alpha-cells of the endocrine pancreas (islets of Langerhans) during fasting and is essential for the maintenance of blood glucose levels by stimulation of hepatic glucose output. Excessive production and secretion of glucagon by the alpha-cells of the islets is a common accompaniment to diabetes. The resulting hyperglucagonemia stimulates hepatic glucose ...
متن کاملHyperglucagonemia and insulin-mediated glucose metabolism.
The effect of chronic physiologic hyperglucagonemia on basal and insulin-mediated glucose metabolism was evaluated in normal subjects, using the euglycemic insulin clamp technique (+50, +100, and +500 microU/ml). After glucagon infusion fasting glucose increased from 76 +/- 4 to 93 +/- 2 mg/dl and hepatic glucose production (HGP) rose from 1.96 +/- 0.08 to 2.25 +/- 0.08 mg/kg X min (P less than...
متن کاملCharacterization of response of circulating glucagon to intraduodenal and intravenous administration of amino acids.
Studies were carried out to determine if hyperaminoacidemia stimulates the secretion of pancreatic glucagon, and, if so, to evaluate the effect of endogenous and exogenous pancreozymin and of hyperglycemia upon this response. The intravenous administration to 16 dogs of 1 g/kg of a 10 amino acid mixture over a 60 min period raised amino nitrogen to a mean level of 13.5 mg/100 ml; mean pancreati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 100 12 شماره
صفحات -
تاریخ انتشار 1997